
From “No Way” to 0-day:
Weaponizing the
Unweaponizable

Joshua Wise

1

“...you’re de0uing it wrong...”

Outline

• Intro

• Vulnerabilities: in general

- What makes something easy to exploit?

• Vulnerabilities: a case study

- Making something hard into something doable

• Briefly -- what went wrong?

- How did this sort of thing happen?

• Q & A

2

Intro: Me

• Just some guy, you know?

• All-purpose embedded hacker

- Got roped into Android at some point

• Recovering software guy

- Now doing ASIC design

• Buzzword compliant

- Working on IMB in ECE at CMU

3

unrevoked

Intro: You

• At least a little bit of kernel
experience?

• Interested in security?

• Not a skript kiddie

- No code for you to compile
here

- Enough description for a skilled
programmer to repro this

4

image: me, 12 years old

Today’s vulnerability
• While looking for ways to root Android phones, came

across...

- CVE-2010-1084

• “CVE request: kernel: bluetooth: potential bad memory
access with sysfs files”
- “...allows attackers to cause a denial of service (memory

corruption)”

• First showed up in 2.6.18, fixed in 2.6.33

- ...ouch!

- Raise your hand if you haven’t patched up to 2.6.33 yet

5

Mechanism of crash

• Classic vulnerability

- for each Bluetooth socket, sprintf() onto the end of
a string in a buffer

- no check for end of buffer

• With a twist

- gets the buffer from the frame allocator; scribbles into
next frame (uncontrolled target)

- contents not controlled

- length only kind of controlled

6

Yesterday’s vulnerability

• Refresher: easy vulnerability

• Simple stack smash:
void cs101_greeter() { // prof said it has 2 be setuid root 4 term axx
 char buf[1024];
 printf(“What is your name?\n”);
 gets(buf); // my prof said not to use gets(3)
 printf(“Hello, %s!\n”, buf);// so i used gets(buf), thats ok rite?
}

• Easily exploitable properties

- Controlled target

- Controlled length

- Controlled contents (with a few limitations)

7

Watch that stack!

• What happens next?

- “User” inputs something bad.

• Where does it go?

8

Watch that stack!
• What happens next?
- “User” inputs something bad.

• Where does it go?

9

main()’s stack frame
0xC0000000

...

return addr for greeter()

other BS for greeter()

0xBFFF8008

buf

0xBFFF8004

0xBFFF8000

0xBFFF7C00

gets()’s stack frame

!
These addresses are for
no machine in particular!

Watch that stack!
• What happens next?
- “User” inputs something bad.

• Where does it go?

10

main()’s stack frame
0xC0000000

...

return addr for greeter()

other BS for greeter()

0xBFFF8008

buf

0xBFFF8004

0xBFFF8000

0xBFFF7C00

gets()’s stack frame

!
These addresses are for
no machine in particular!

$ /afs/cs/course/15123-sfnoob/usr\
 /aashat/bin/greeter
What is your name?
AAAAAAAAAAAAA...∆∫∆∂œåµƒ...
Hello, AAAAAAAAA...
 [+] pwned

Watch that stack!
• What happens next?
- “User” inputs something bad.

• Where does it go?

11

main()’s stack frame
...

return addr for greeter()

other BS for greeter()

buf

gets()’s stack frame

$ /afs/cs/course/15123-sfnoob/usr\
 /aashat/bin/greeter
What is your name?
AAAAAAAAAAAAA...∆∫∆∂œåµƒ...
Hello, AAAAAAAAA...
 [+] pwned

now contains code!

now contains address
of code in buf!

Why did that work so
well?

• Remember the three controls:

- Attacker-controlled target

• Always blast the ret addr - same memory each time

- Attacker-controlled length

• We never blast off the end of the stack into
segfaultland

- Attacker-controlled contents

• Write anything we want but 0x00 and ’\n’

12

From yesterday comes
tomorrow

• Today’s exploit, at its core:
- (for those of you following along at home, in l2cap_sysfs_show)

- str = get_zeroed_page(GFP_KERNEL);
...

for each l2cap_sk_list as sk:
 str += sprintf(str, "%s %s %d %d 0x%4.4x 0x%4.4x %d %d %d\n"
 batostr(&bt_sk(sk)->src),...);

• What year is it? I seem to have forgotten

13

sprintf() out of control

• Issue is obvious, and crash is inevitable --
but what of our three controls?

• Controlled target

- How is buf allocated?

• sysfs buffer comes from frame allocator

- What comes after?

• Some other poor noob’s frame!

14

(aside: frames and pages)
• Frames are physical memory backings of pages.
- Don’t confuse with ‘stack frames’!

• Pages are chunks of virtual memory.

15

Process A pages

0xBFFFF000 Stack

.text

.data

!

0x8C028000

0x8C020000

...

...

Process B pages

0xBFFFF000Stack

.text

.data 0x8C028000

0x8C020000

...

...

Physical memory frames

• Linux kernel has both mapped into A.S.!

• Needed for frame allocations (__GFP_KERNEL) -- more later

A Stack

A .data

Kernel code

Shared .text
B Stack

sprintf() out of control

• Issue is obvious, and crash is inevitable --
but what of our three controls?

• Controlled length

- Writes take place through a sprintf() to a
strange place

- We can’t stop it before it smashes something
else

16

sprintf() out of control

• Issue is obvious, and crash is inevitable --
but what of our three controls?

• Controlled contents

- No data comes directly from us

- All data comes formatted

17

sprintf() out of control

• Issue is obvious, and crash is inevitable --
but what of our three controls?

• Zero for three!

• Now would be a good time to start
controlling our environment.

18

Target practice

• How can we control the target?

• Let’s use an old-fashioned heap spray.

- ...but what?

- First idea: kstack!

• It worked so well in CS101, right?

19

“With Emarhavil, your target is our target.”

Jenga

• Let’s assume:

- kernel stack is the frame after the sysfs page

- we know which pid the kstack belongs to

• Given that, what happens?

- What does a kstack even look like?

20

Jenga

• Like other
stacks, a kstack
has stack
frames

• Unlike other
stacks, a kstack
has a TCB
attached to it!

21

str

0x782F2000

0x782F3000
thread control block

the abyss

some poor dude’s stack

~0x782F3100

~0x782F3DE8

return address

more stack frames, reg saves...

0x782F4000

~0x782F3E80

~0x782F3E84

!

...

Jenga

• What happens
when we
write?

22

str

0x782F2000

0x782F3000
thread control block

the abyss

some poor dude’s stack

~0x782F3100

~0x782F3DE8

return address

more stack frames, reg saves...

0x782F4000

~0x782F3E80

~0x782F3E84

...

sprintf(str, “ownedownedownedowned”
 “ownedownedownedowned”
 ...);

!

Jenga

• What happens
when we
write?

23

str

0x782F2000

0x782F3000
thread control block

the abyss

some poor dude’s stack

~0x782F3100

~0x782F3DE8

return address

more stack frames, reg saves...

0x782F4000

~0x782F3E80

~0x782F3E84

...

sprintf(str, “ownedownedownedowned”
 “ownedownedownedowned”
 ...);

ownedownedownedownedownedowned o
w
n
e
d
o
w
n
e
d
o
w
n
e
d
o
w
n
e
d
o
w
n
e
d

Jenga

• What happens
when we write?

- TCB is clobbered!

- Could be OK; this
time not.

24

str

0x782F2000

0x782F3000
thread control block

the abyss

some poor dude’s stack

~0x782F3100

~0x782F3DE8

return address

more stack frames, reg saves...

0x782F4000

~0x782F3E80

~0x782F3E84

...

sprintf(buf, “ownedownedownedowned”
 “ownedownedownedowned”
 ...);

ownedownedownedownedownedowned o
w
n
e
d
o
w
n
e
d
o
w
n
e
d
o
w
n
e
d
o
w
n
e
d

Getting physical

• What else goes in physical frames?

• Linux kernel has interesting mechanism
called SLAB allocator

- Creates uniform “caches” of specific objects

• conveniently, frame-sized!

- Localizes similar objects in memory

- Avoids expensive variable-size allocation

- Originally designed by the Sun guys

25

free
slot

SLABs of memory

• What’s in a SLAB?

• Where’s the list of SLABs available?

- SLAB metadata stored in... a SLAB!

26

in-use
object

free
slot

free
slot

in-use
object

free
slot

in-use
object

free
slot

frame boundary frame boundary frame boundary
pointer to

next free slot

pointer to
first free slot

NULL NULL

free
slot

SLABs of memory

• What’s in a SLAB?

• No per-SLAB header

- Convenient...

27

in-use
object

free
slot

free
slot

in-use
object

free
slot

in-use
object

free
slot

frame boundary frame boundary frame boundary
NULL NULL

free
slot

SLABs of memory

• What’s in a SLAB?

• No per-SLAB header

- Convenient...

28

in-use
object

free
slot

free
slot

in-use
object

free
slot

in-use
object

free
slot

frame boundary frame boundary frame boundary
NULL NULL

str
(hum de dum)

Who eats SLABs?

• Pretty much every kernel subsystem
- joshua@escape:~/linux$ find . | \

 xargs grep kmem_cache_alloc | \
 wc -l
305

- joshua@nyus:/proc$ cat slabinfo | wc -l
183

• Something in there has to be an easy target

• How about... file descriptors?

- Stored in struct file, in SLABs

29

Filed away for reference

• What does a struct file look like?
- struct file {

 union {...} f_u; /* morally, two pointers */
 struct path f_path; /* morally, two pointers */
 struct file_operations *f_op;
 unsigned int f_count, f_flags, f_mode;
 ...
}
struct file_operations {
 struct module *owner;
 loff_t (*llseek)(...);
 ssize_t (*read)(...);
 ssize_t (*write)(...);
 ssize_t (*aio_read)(...);

30

Filed away for reference

31

• What does a struct file look like?

- (best case!)

f_u

frame boundary

remember, this is
at the start of a

SLAB!

f_u f_path f_path f_op f_count f_flags

each block is
one pointer size

f_mode ...

Filed away for reference

32

• What does a struct file look like?

- (really really best case!)

f_u

frame boundary

remember, this is
at the start of a

SLAB!

f_u f_path f_path f_op f_count f_flags f_modestr
(hum de dum)

get_zeroed_page
comes from same

pool as SLABs
(more later)

...

Filed away for reference

33

• What does a struct file look like?

- Parts that the kernel can survive for a little while without darkened

f_u

frame boundary

remember, this is
at the start of a

SLAB!

f_u f_path f_path f_op f_count f_flags ...f_modestr
(hum de dum)

get_zeroed_page
comes from same

pool as SLABs
(more later)

Great news!

34

Great news!

35

• In essence -- struct file can be paved
over at will

- ... just as long as we get a reasonable value into
f_op.

f_u f_u f_path f_path f_op f_count f_flags ...f_modestr
(hum de dum)

One for three

• Remember the three controls:

- Attacker-controlled length

- Attacker-controlled contents

- Attacker-controlled target

• Length is no longer an issue

- We can go over by a little ways without causing
an immediate crash

36

Back to the content

• It is difficult to write arbitrary content...

- ...but easy to predict content.
- str += sprintf(str, "%s %s %d %d 0x%4.4x 0x%4.4x %d %d %d\n"

 batostr(&bt_sk(sk)->src),...);

• Usually looks like:
- "00:00:00:00:00:00 00:00:00:00:00:00 2 0 0x0000

0x0000 672 0 1” repeated a bunch
• well, as many times as we want...

•What does this mean for us?

37

Back to the content

• Data that looks like this must end up in the
file structure.
- "00:00:00:00:00:00 00:00:00:00:00:00 2 0 0x0000

0x0000 672 0 1”

- Substring must end up in f_op!

• What, exactly, can go in f_op?

- more importantly, can this go in f_op?

38

Addressability
• f_op is just a pointer into kernel’s A.S.!

- Remember: kernel’s A.S. is superset of user’s A.S.

- f_op can be pointer to user memory

• Game plan
- Map all substrings

- ASCII representations should be valid pointers to f_op target.

• “00:0” -> 0x30303A30

• “0:00” -> 0x303A3030

• “0 0:” -> 0x3020303A

• ...

39

Now what?

• We’re done, right?

40

f_u f_u f_path f_path f_op f_count f_flags ...f_modestr
(hum de dum)

00:00:00:00:00:00 00:00:00:00:00:00 2 0 0x0000 0x0000 672 0 1

owner = NULL

llseek = &attacker_ring0

read = &attacker_ring0

...

mapped in
userspace!

(mmap(), etc)

some other data

Now what?

• Not so fast.

- Real life, more likely:

41

f_u f_u f_path f_path f_op f_count f_flags f_modestr
(hum de dum)

00:00:00:00:00:00 00:00:00:00:00:00 2 0 0x0000 0x0000 672 0 1

owner = NULL

llseek = &attacker_ring0

read = &attacker_ring0

...

Two for three

• Remember the three controls:

- Attacker-controlled length

- Attacker-controlled contents

- Attacker-controlled target

• Contents not controlled... but predicted.

- We now have length and contents handled.

42

Let’s be buddies

• How do we control the relative placement of frames?

- (i.e., the target)

• Physical frames allocated on Linux using “buddy
allocator”
- Really old best-fit allocator -- Markowitz, 1963

- Works really well with fragmentation-reducing strategies
like SLAB

- linux/mm/page_alloc.c

• Run in god-damn fear.

43

Let’s be buddies

• Buddy allocator has important features

- Injects determinism and predictability into
otherwise unordered frame allocation

- Localizes size-one frames when able

• Implementation details beyond scope of
this talk

- You gotta pick one, and I think SLAB is cooler

44

Localizer approach

• Plan:

- Fill up memory

• Cause frames that would result in discontinuities to be paged to disk

- Free memory to generate contiguous chunks

- Allocate chunks of memory for struct files

- Allocate buffer page

• Opening sysfs file does this. This is critical!

- Allocate more chunks of memory for struct files

- Fire!

45

Localizer approach

46

free free free in use free in use free free

free free in use free free free free free

free in use free free free in use free free

free free in use free free in use free free

Initial configuration

Localizer approach

47

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

Allocate all memory for us

Localizer approach

48

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

Free and allocate to get contiguous phys chunks

Localizer approach

49

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

free free free free ours ours ours ours

ours ours ours ours ours ours ours ours

Release contiguous phys frames

Localizer approach

50

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

files files str files ours ours ours ours

ours ours ours ours ours ours ours ours

Set up files, buffer, files

Localizer approach

51

ours ours ours ours ours ours ours ours

ours ours ours ours ours ours ours ours

files files str files ours ours ours ours

ours ours ours ours ours ours ours ours

Pwn

Three for three!

• Remember the three controls:

- Attacker-controlled length

- Attacker-controlled contents

- Attacker-controlled target

• Target became controlled by deterministic
memory permutation.

• Result: system owned.

52

So close, guys

53

/*
 * The code works fine with PAGE_SIZE return but it's likely to
 * indicate truncated result or overflow in normal use cases.
 */
if (count >= (ssize_t)PAGE_SIZE) {
 print_symbol("fill_read_buffer: %s returned bad count\n",
 (unsigned long)ops->show);
 /* Try to struggle along */
 count = PAGE_SIZE - 1;
}

Demo

54

Conclusions

• Difficult-to-exploit bugs can be made easier by thinking
about controlling your environment
- Attacker-controlled length

- Attacker-controlled contents

- Attacker-controlled target

• Just because it’s not easy, that doesn’t mean that it’s impossible!

55

Conclusions

• Difficult-to-exploit bugs can be made easier by thinking
about controlling your environment
- Attacker-controlled length

- Attacker-controlled contents

- Attacker-controlled target

• Just because it’s not easy, that doesn’t mean that it’s impossible!

• Side conclusion:
- Phone vendors: we will win. We have physical access; root on

these phones will be ours. Please stop your crusade to keep me
from using my own phone.

55

Questions?

56

